Flashnux

GNU/Linux man pages

Livre :
Expressions régulières,
Syntaxe et mise en oeuvre :

ISBN : 978-2-7460-9712-4
EAN : 9782746097124
(Editions ENI)

GNU/Linux

Debian 7.2.0

(Wheezy)
amd64

complex(7)


COMPLEX

COMPLEX

NAME
SYNOPSIS
DESCRIPTION
EXAMPLE
SEE ALSO
COLOPHON

NAME

complex − basics of complex mathematics

SYNOPSIS

#include <complex.h>

DESCRIPTION

Complex numbers are numbers of the form z = a+b*i, where a and b are real numbers and i = sqrt(−1), so that i*i = −1.
There are other ways to represent that number. The pair (a,b) of real numbers may be viewed as a point in the plane, given by X- and Y-coordinates. This same point may also be described by giving the pair of real numbers (r,phi), where r is the distance to the origin O, and phi the angle between the X-axis and the line Oz. Now z = r*exp(i*phi) = r*(cos(phi)+i*sin(phi)).

The basic operations are defined on z = a+b*i and w = c+d*i as:
addition: z+w = (a+c) + (b+d)*i
multiplication: z*w = (a*c − b*d) + (a*d + b*c)*i
division: z/w = ((a*c + b*d)/(c*c + d*d)) + ((b*c − a*d)/(c*c + d*d))*i

Nearly all math function have a complex counterpart but there are some complex-only functions.

EXAMPLE

Your C-compiler can work with complex numbers if it supports the C99 standard. Link with −lm. The imaginary unit is represented by I.

/* check that exp(i * pi) == −1 */
#include <math.h> /* for atan */
#include <stdio.h>
#include <complex.h>

int
main(void)
{
double pi = 4 * atan(1.0);
double complex z = cexp(I * pi);
printf("%f + %f * i\n", creal(z), cimag(z));
}

SEE ALSO

cabs(3), cacos(3), cacosh(3), carg(3), casin(3), casinh(3), catan(3), catanh(3), ccos(3), ccosh(3), cerf(3), cexp(3), cexp2(3), cimag(3), clog(3), clog10(3), clog2(3), conj(3), cpow(3), cproj(3), creal(3), csin(3), csinh(3), csqrt(3), ctan(3), ctanh(3)

COLOPHON

This page is part of release 3.44 of the Linux man-pages project. A description of the project, and information about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/.



complex(7)