GNU/Linux |
CentOS 4.8 |
i386 |
![]() |
sgttrs(l) |
![]() |
SGTTRS - solve one of the systems of equations A*X = B or A’*X = B,
SUBROUTINE SGTTRS( |
TRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB, INFO ) | ||
CHARACTER |
TRANS | ||
INTEGER |
INFO, LDB, N, NRHS | ||
INTEGER |
IPIV( * ) | ||
REAL |
B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * ) |
SGTTRS solves one of the systems of equations A*X = B or A’*X = B, with a tridiagonal matrix A using the LU factorization computed by SGTTRF.
TRANS (input) CHARACTER
Specifies the form of the
system of equations. = ’N’: A * X = B (No
transpose)
= ’T’: A’* X = B (Transpose)
= ’C’: A’* X = B (Conjugate transpose =
Transpose)
N (input) INTEGER
The order of the matrix A.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
DL (input) REAL array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the LU factorization of A.
D (input) REAL array, dimension (N)
The n diagonal elements of the upper triangular matrix U from the LU factorization of A.
DU (input) REAL array, dimension (N-1)
The (n-1) elements of the first super-diagonal of U.
DU2 (input) REAL array, dimension (N-2)
The (n-2) elements of the second super-diagonal of U.
IPIV (input) INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was interchanged with row IPIV(i). IPIV(i) will always be either i or i+1; IPIV(i) = i indicates a row interchange was not required.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the matrix of right hand side vectors B. On exit, B is overwritten by the solution vectors X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal
value
![]() |
sgttrs(l) | ![]() |