GNU/Linux |
CentOS 4.8 |
i386 |
![]() |
dpotrs(l) |
![]() |
DPOTRS - solve a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF
SUBROUTINE DPOTRS( |
UPLO, N, NRHS, A, LDA, B, LDB, INFO ) |
|||
CHARACTER |
UPLO |
|||
INTEGER |
INFO, LDA, LDB, N, NRHS |
|||
DOUBLE |
PRECISION A( LDA, * ), B( LDB, * ) |
DPOTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF.
UPLO (input) CHARACTER*1
= ’U’: Upper
triangle of A is stored;
= ’L’: Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by DPOTRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B. On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal
value
![]() |
dpotrs(l) | ![]() |