GNU/Linux |
CentOS 4.8 |
i386 |
![]() |
dlags2(l) |
![]() |
DLAGS2 - compute 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then U’*A*Q = U’*( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and V’*B*Q = V’*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then U’*A*Q = U’*( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V’*B*Q = V’*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) The rows of the transformed A and B are parallel, where U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) Z’ denotes the transpose of Z
SUBROUTINE DLAGS2( |
UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV, CSQ, SNQ ) | ||
LOGICAL |
UPPER | ||
DOUBLE |
PRECISION A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, SNQ, SNU, SNV |
DLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then U’*A*Q = U’*( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and V’*B*Q = V’*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then U’*A*Q = U’*( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V’*B*Q = V’*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) The rows of the transformed A and B are parallel, where U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) Z’ denotes the transpose of Z.
UPPER (input) LOGICAL
= .TRUE.: the input matrices A
and B are upper triangular.
= .FALSE.: the input matrices A and B are lower
triangular.
A1 (input) DOUBLE PRECISION
A2 (input) DOUBLE PRECISION A3 (input) DOUBLE PRECISION On entry, A1, A2 and A3 are elements of the input 2-by-2 upper (lower) triangular matrix A.
B1 (input) DOUBLE PRECISION
B2 (input) DOUBLE PRECISION B3 (input) DOUBLE PRECISION On entry, B1, B2 and B3 are elements of the input 2-by-2 upper (lower) triangular matrix B.
CSU (output) DOUBLE PRECISION
SNU (output) DOUBLE PRECISION The desired orthogonal matrix U.
CSV (output) DOUBLE PRECISION
SNV (output) DOUBLE PRECISION The desired orthogonal matrix V.
CSQ (output) DOUBLE PRECISION
SNQ (output) DOUBLE PRECISION The desired orthogonal matrix Q.
![]() |
dlags2(l) | ![]() |