Flashnux

GNU/Linux man pages

Livre :
Expressions régulières,
Syntaxe et mise en oeuvre :

ISBN : 978-2-7460-9712-4
EAN : 9782746097124
(Editions ENI)

GNU/Linux

CentOS 4.8

i386

cunmbr(l)


CUNMBR

CUNMBR

NAME
SYNOPSIS
PURPOSE
ARGUMENTS

NAME

CUNMBR - VECT = ’Q’, CUNMBR overwrites the general complex M-by-N matrix C with SIDE = ’L’ SIDE = ’R’ TRANS = ’N’

SYNOPSIS

SUBROUTINE CUNMBR(

VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )

CHARACTER

SIDE, TRANS, VECT

INTEGER

INFO, K, LDA, LDC, LWORK, M, N

COMPLEX

A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )

PURPOSE

If VECT = ’Q’, CUNMBR overwrites the general complex M-by-N matrix C with SIDE = ’L’ SIDE = ’R’ TRANS = ’N’: Q * C C * Q TRANS = ’C’: Q**H * C C * Q**H

If VECT = ’P’, CUNMBR overwrites the general complex M-by-N matrix C with
SIDE = ’L’ SIDE = ’R’
TRANS = ’N’: P * C C * P
TRANS = ’C’: P**H * C C * P**H

Here Q and P**H are the unitary matrices determined by CGEBRD when reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q and P**H are defined as products of elementary reflectors H(i) and G(i) respectively.

Let nq = m if SIDE = ’L’ and nq = n if SIDE = ’R’. Thus nq is the order of the unitary matrix Q or P**H that is applied.

If VECT = ’Q’, A is assumed to have been an NQ-by-K matrix: if nq >= k, Q = H(1) H(2) . . . H(k);
if nq < k, Q = H(1) H(2) . . . H(nq-1).

If VECT = ’P’, A is assumed to have been a K-by-NQ matrix: if k < nq, P = G(1) G(2) . . . G(k);
if k >= nq, P = G(1) G(2) . . . G(nq-1).

ARGUMENTS

VECT (input) CHARACTER*1

= ’Q’: apply Q or Q**H;
= ’P’: apply P or P**H.

SIDE (input) CHARACTER*1

= ’L’: apply Q, Q**H, P or P**H from the Left;
= ’R’: apply Q, Q**H, P or P**H from the Right.

TRANS (input) CHARACTER*1

= ’N’: No transpose, apply Q or P;
= ’C’: Conjugate transpose, apply Q**H or P**H.

M (input) INTEGER

The number of rows of the matrix C. M >= 0.

N (input) INTEGER

The number of columns of the matrix C. N >= 0.

K (input) INTEGER

If VECT = ’Q’, the number of columns in the original matrix reduced by CGEBRD. If VECT = ’P’, the number of rows in the original matrix reduced by CGEBRD. K >= 0.

A (input) COMPLEX array, dimension

(LDA,min(nq,K)) if VECT = ’Q’ (LDA,nq) if VECT = ’P’ The vectors which define the elementary reflectors H(i) and G(i), whose products determine the matrices Q and P, as returned by CGEBRD.

LDA (input) INTEGER

The leading dimension of the array A. If VECT = ’Q’, LDA >= max(1,nq); if VECT = ’P’, LDA >= max(1,min(nq,K)).

TAU (input) COMPLEX array, dimension (min(nq,K))

TAU(i) must contain the scalar factor of the elementary reflector H(i) or G(i) which determines Q or P, as returned by CGEBRD in the array argument TAUQ or TAUP.

C (input/output) COMPLEX array, dimension (LDC,N)

On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q or P*C or P**H*C or C*P or C*P**H.

LDC (input) INTEGER

The leading dimension of the array C. LDC >= max(1,M).

WORK (workspace/output) COMPLEX array, dimension (LWORK)

On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK (input) INTEGER

The dimension of the array WORK. If SIDE = ’L’, LWORK >= max(1,N); if SIDE = ’R’, LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE = ’L’, and LWORK >= M*NB if SIDE = ’R’, where NB is the optimal blocksize.

If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.

INFO (output) INTEGER

= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value



cunmbr(l)