GNU/Linux |
CentOS 4.8 |
i386 |
![]() |
cstedc(l) |
![]() |
CSTEDC - compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method
SUBROUTINE CSTEDC( |
COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO ) | ||
CHARACTER |
COMPZ | ||
INTEGER |
INFO, LDZ, LIWORK, LRWORK, LWORK, N | ||
INTEGER |
IWORK( * ) | ||
REAL |
D( * ), E( * ), RWORK( * ) | ||
COMPLEX |
WORK( * ), Z( LDZ, * ) |
CSTEDC computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method. The eigenvectors of a full or band complex Hermitian matrix can also be found if CHETRD or CHPTRD or CHBTRD has been used to reduce this matrix to tridiagonal form.
This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. See SLAED3 for details.
COMPZ (input) CHARACTER*1
= ’N’: Compute
eigenvalues only.
= ’I’: Compute eigenvectors of tridiagonal
matrix also.
= ’V’: Compute eigenvectors of original
Hermitian matrix also. On entry, Z contains the unitary
matrix used to reduce the original matrix to tridiagonal
form.
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the diagonal elements of the tridiagonal matrix. On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) REAL array, dimension (N-1)
On entry, the subdiagonal elements of the tridiagonal matrix. On exit, E has been destroyed.
Z (input/output) COMPLEX array, dimension (LDZ,N)
On entry, if COMPZ = ’V’, then Z contains the unitary matrix used in the reduction to tridiagonal form. On exit, if INFO = 0, then if COMPZ = ’V’, Z contains the orthonormal eigenvectors of the original Hermitian matrix, and if COMPZ = ’I’, Z contains the orthonormal eigenvectors of the symmetric tridiagonal matrix. If COMPZ = ’N’, then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1. If eigenvectors are desired, then LDZ >= max(1,N).
WORK (workspace/output) COMPLEX array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. If COMPZ = ’N’ or ’I’, or N <= 1, LWORK must be at least 1. If COMPZ = ’V’ and N > 1, LWORK must be at least N*N.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
RWORK (workspace/output) REAL array,
dimension (LRWORK) On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
LRWORK (input) INTEGER
The dimension of the array RWORK. If COMPZ = ’N’ or N <= 1, LRWORK must be at least 1. If COMPZ = ’V’ and N > 1, LRWORK must be at least 1 + 3*N + 2*N*lg N + 3*N**2 , where lg( N ) = smallest integer k such that 2**k >= N. If COMPZ = ’I’ and N > 1, LRWORK must be at least 1 + 4*N + 2*N**2 .
If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the RWORK array, returns this value as the first entry of the RWORK array, and no error message related to LRWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (LIWORK)
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of the array IWORK. If COMPZ = ’N’ or N <= 1, LIWORK must be at least 1. If COMPZ = ’V’ or N > 1, LIWORK must be at least 6 + 6*N + 5*N*lg N. If COMPZ = ’I’ or N > 1, LIWORK must be at least 3 + 5*N .
If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the IWORK array, returns this value as the first entry of the IWORK array, and no error message related to LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal
value.
> 0: The algorithm failed to compute an eigenvalue while
working on the submatrix lying in rows and columns
INFO/(N+1) through mod(INFO,N+1).
Based on
contributions by
Jeff Rutter, Computer Science Division, University of
California
at Berkeley, USA
![]() |
cstedc(l) | ![]() |